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The existence of a finite threshold, the yield stress, for the onset of plastic yielding is a universal feature of
plasticity. This jamming-unjamming transition is naturally accounted for by the dynamics of a bistable internal
state field. We show, within the athermal shear transformation zone theory of amorphous plasticity, that the
transition is accompanied by the propagation of plastic fronts. We further show that the mean-field theory
cannot select the velocity of these fronts, and go beyond the mean-field description to include fluctuations and
correlations effects, resulting in additional nonlocal terms in the equations. Finally, we demonstrate that these
terms, with an associated intrinsic length scale, provide a velocity selection mechanism for the plastic fronts.
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I. INTRODUCTION

A complete understanding of the dynamics of plastic de-
formation in low-temperature, or athermal, amorphous sys-
tems remains a major theoretical challenge in statistical and
condensed matter physics. The response of these systems to
the application of external driving forces exhibits some uni-
versal features like a transition from jamming to flow at the
yield stress, orientational memory effects of recent deforma-
tion, and strain localization �1�. In this work we focus on the
spatiotemporal patterns associated with the transition from
jamming to flow at the onset of plastic yielding, in the frame-
work of the recently developed athermal shear transforma-
tion zone �STZ� theory of amorphous systems �2,3�. This
transition is controlled by the applied stress. For stresses be-
low a material-dependent threshold, the yield stress, these
systems exhibit elastic deformation as well as transient plas-
tic flow that vanishes at a finite time. The resulting state is
“jammed” in the sense that it carries a finite stress without
flowing. On the other hand, for stresses that exceed the yield
stress, these systems exhibit persistent plastic flow, implying
some remarkable “unjamming” �or yielding� transition at the
yield stress.

A major difficulty in developing a theory of amorphous
plasticity, which among other things should predict plastic
yielding at a finite yield stress, is that the identity and char-
acteristics of the microstructural objects that “carry” plastic
deformation in amorphous �disordered� systems remain quite
elusive. However, a growing body of experimental and simu-
lational evidence seems to point toward a unifying picture in
which low-temperature amorphous plasticity involves stress-
driven configurational rearrangements of localized regions
composed of a small collection of the relevant elementary
entities �e.g., particles, molecules, grains, colloids, bubbles�
�4�. The existence of such a unifying picture, which is inde-
pendent of the elementary entities and their microscopic in-
teractions, is fully consistent with the existence of universal
features mentioned above.

In line with this accumulating evidence, the athermal
shear transformation zone theory of amorphous plasticity
views STZs as localized groups of particles that are more

susceptible to shearing transformation under stress than their
surroundings. Upon surpassing a local threshold a STZ can
undergo a finite irreversible shear in a given direction. Once
transformed, due to a local redistribution of stresses, a STZ
resists further deformation in that direction, but is particu-
larly sensitive to reverse shear deformation if the local ap-
plied stress changes sign. Therefore, a STZ is conceived as a
two-state system that can transform between its internal
states depending on the magnitude and direction of the local
stress. In addition, the stress redistribution that accompanies
a STZ transition can induce the creation and annihilation of
other STZs at a rate proportional to the local energy dissipa-
tion �recall that thermal fluctuations are assumed to be absent
or negligible�. The minimal two-state assumption, along with
the deformation-driven creation and annihilation of STZs,
provides a mechanism for retaining and losing orientational
memory of previous deformation and is sufficient to capture
the transition from jamming to flow at a finite yield stress.

We choose to study the spatiotemporal characteristics of
the unjamming transition using STZ theory for two major
reasons. First, the existence of the transition is described in
this theory, as will be explained in detail below, by an ex-
change of dynamic stability in the equations of motion for an
internal state field. More generally, STZ theory aims at iden-
tifying proper internal state fields �order parameters� and pro-
poses equations of motion for these based on microscopic
insights, symmetries and conservation laws �2,3�. We find
such an approach very appealing. Second, recent work has
shown that the STZ equations capture a variety of phenom-
ena observed in computer simulations and laboratory experi-
ments �5–13�. Most relevant for our purposes here are the
results reported in �12,13�. In �12�, the two-state nature of
STZs was observed directly in bubble-raft experiments and
two-dimensional foam simulations. It was found that groups
of bubbles can make transitions, the so-called T1 events that
are realizations of STZ transitions in foam, between two
states if the direction of the applied force is reversed shortly
after an event occurs. However, if the force is not reversed
until after other events have occurred nearby, then the orien-
tational memory is lost, implying that a STZ is annihilated.
In �13� the STZ equations were shown to agree quantitatively
with transient shear reversal behavior of a granular flow in a
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Taylor-Couette cell. This result provides direct support to an
equation that will be central in the analysis to follow.

We proceed by introducing the relevant mean-field STZ
equations in Sec. II, where we also discuss the existence of
the transition from jamming to flow at a finite yield stress
and the physics behind it. In Sec. III we focus on the spa-
tiotemporal characteristics of the unjamming transition. We
show that there exist propagating front solutions if the equa-
tions are modified to include effects beyond the mean field as
well as an intrinsic length scale. Section IV offers some con-
cluding remarks.

II. ELEMENTS OF THE ATHERMAL SHEAR
TRANSFORMATION ZONE THEORY

Consider a two-dimensional athermal amorphous system
under the application of a pure shear stress s. The two states
of a STZ are oriented along the principal axes x �the direc-
tion of the force� and y �the perpendicular direction�, and
denoted by �. The number densities of STZs in the � states
are denoted by n�. The configurational disorder of the sys-
tem is characterized by an effective disorder temperature �
that is assumed to govern the total density of the STZ, with
n�e−1/� being the steady state density of the STZ under per-
sistent deformation. � was shown very recently to play an
important role in the deformation dynamics of amorphous
solids �6–10�; however, its dynamics in the present context
are not of prime interest and will not be discussed. The in-
ternal state fields n� and �, in addition to the applied stress s,
determine the macroscopic plastic rate of deformation Dpl

according to �3�

�0Dpl = ��R�s�n− − R�− s�n+� , �1�

�0ṅ� = R��s�n� − R��s�n� + 	�n�e−1/�

2
− n�� . �2�

Here � is a material-specific parameter with the dimensions
of area. �0 is the basic time scale and R��s� /�0 are the rates
for forward and backward transitions, respectively. The
athermal condition implies that R�s� vanishes for s
0, i.e.,
there are no transitions in the direction opposite to the direc-
tion of the applied force �3�.

Equation �1� simply states that the macroscopic plastic
rate of deformation Dpl results from STZ transitions between
their two internal states, depending on the driving force
through R�s� and on the population of STZs in each of the
two states. Equations �2� are master equations for the popu-
lation densities n� themselves. The first two terms on the
right-hand side describe the number-conserving process in
which STZs change their state from � to � or vice versa.
The third term on the right-hand side is a coupling term that
accounts for interactions between STZs. As mentioned
above, the stress redistribution that accompanies a STZ tran-
sition can induce the creation and annihilation of other STZs.
This is a crucial aspect of the theory. The rate of STZ cre-
ation, 	, which is a positive definite scalar, is assumed to be
proportional to the rate of plastic dissipation 2sDpl �2,3�. For
low temperature we obtain �2,3�

	 =
2�0sDpl

sy�0e−1/� , �3�

where sy is a material-specific parameter of stress dimension,
which is shown below to be equal to the yield stress. sy has
an interesting physical meaning: it quantifies how much of
the dissipated energy is invested in creating new STZs.
When it is large, only a small amount of the dissipated en-
ergy is invested in creating new STZs �available for irrevers-
ible transitions� and vice versa. This interpretation immedi-
ately suggests that sy is related to the yield stress; see �14� for
a discussion of this issue from an entropic point of view.

We proceed by setting the total STZ density to its steady
state value, n++n−=n�e−1/�, and by defining an orientational
order parameter m �which is generally a tensor; see �8�� as

m �
n+ − n−

n+ + n−
. �4�

This internal state field represents the bias of the STZ popu-
lations between the � states. With these choices we can re-
write Eqs. �1� and �2� as

�0Dpl = �0e−1/�C�s��sgn� s

sy
� − m	 , �5�

�0ṁ = 2C�s��sgn� s

sy
� − m	�1 −

sm

sy
� . �6�

Here �0��n� and

C�s� �
R�s� + R�− s�

2
. �7�

The theoretical framework in which the amorphous system is
characterized by coarse-grained internal state fields, in addi-
tion to stress and strain, is a major point of divergence com-
pared to other approaches �2� and plays a crucial role in the
discussion below, where the field m is the central object.

In �13�, Eqs. �5� and �6� were directly applied to predict
transient granular flow in experiments of shear reversal in a
Taylor-Couette cell. The theory was shown to agree well
with the experimental data, encouraging us to study it further
in the present context. The first issue to be discussed is the
stable steady state solutions of Eq. �6�. It has two stationary
solutions: �1� a jammed state with m= �1 �depending on the
sign of s�, where all the STZs are in either the � or the �
state, and Dpl=0 in Eq. �5�; and �2� a flowing state with m
=sy /s and Dpl�0 in Eq. �5�.

These two solutions coincide at s /sy = �1. It is straight-
forward to show that the jammed state is dynamically stable
for 
s
�sy, while the flowing state is dynamically stable for

s
sy. An exchange of stability occurs at s=sy, which in-
deed shows explicitly that sy is the yield stress. The fact that
sy was introduced in Eq. �3� as a proportionality constant
between the rate of STZ creation, 	, and the rate of energy
dissipation, 2sDpl, is yet another point of divergence with
respect to standard approaches. In STZ theory the yield stress
sy, as was explained before, is intimately related to the ability
of the material to create new STZs as a result of plastic
dissipation, i.e., STZ transitions in nearby locations �14�. In
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this interpretation, a material can yield, i.e., support steady
plastic flow, if enough STZs per unit time are created due to
other STZ transitions. If this rate is not sufficiently large,
then existing STZs are exhausted in transitions at a given
direction and not enough new STZs are available for addi-
tional transitions that are needed for attaining a steady state.
For a given applied stress, whether or not 	 is large enough
is determined by sy. This is an entropic effect �14� and it is
the essence of yielding in STZ theory.

As a result, the onset of plastic yielding at a finite thresh-
old is a dynamic phenomenon manifested as an exchange of
stability of the bistable field m �2�. These results have similar
implications for strain-rate- ��̇-� controlled experiments
�complementary to the stress-controlled experiments dis-
cussed up to now�, where the existence of a finite yield stress
means that a steady state with a finite stress is obtained in the
limit �̇→0. The existence of a dynamic threshold is a signa-
ture of an underlying bistability �or multistability�, which is a
natural way to get a finite dissipation at a vanishing strain
rate. Note that all these conclusions are entirely independent
of the material function C�s�. We thus propose that the bista-
bility of the orientational order parameter m is a crucial fea-
ture of the theory of amorphous plasticity.

III. THE TRANSITION FROM JAMMING TO FLOW

We now proceed to analyze the spatiotemporal character-
istics of this jamming-unjamming transition. We substitute
Eq. �5� into Eq. �6� to obtain

�0ṁ = 2C�s��1 − m��1 −
ms

sy
� , �8�

where we have assumed s0. Consider then an experiment
in which the stress is ramped to a constant value smaller than
the yield stress �i.e., s
sy�. The system is assumed to be
initially undeformed and isotropic such that the orientational
order parameter satisfies m�t=0�=0. Equations �5� and �8�
then predict that subyield plastic deformation occurs as m
relaxes to the jamming fixed point m=1 on a typical time
scale �jam�s�,

�jam�s� �
�0

2C�s��1 − s/sy�
, �9�

during which Dpl→0. The jamming time scale �jam�s� di-
verges as s→sy

−, i.e., approaching the yield stress from be-
low, and as s→0+. The latter divergence is a result of the
athermal condition, leading to C�s→0�→0 �3�. Therefore,
Eq. �9� predicts that jamming is obtained by progressively
slower creeplike subyield deformation as s approaches either
0 or 1. Moreover, it provides a way to measure the phenom-
enological function C�s� in the range where the jamming
time is experimentally �or simulationally� accessible.

Suppose now that s /sy is O�1�, but not very close to unity,
such that the system becomes jammed on a realistic time
scale; then suppose that after jamming the applied stress is
ramped again to a value above the yield stress, i.e., ssy.
The system is now in the jammed state, m=1, that is, un-
stable for ssy. In these situations we generally expect fluc-

tuations to propagate as fronts, converting an unstable state
into a stable one. Therefore, we are looking for translation-
ally invariant solutions of the form m�x , t�=m�x−ut�; here
we assume that the x dimension is much larger than the y
dimension and that the front propagates from left to right.
Our task now is to solve Eq. �8� for this ansatz, with the
boundary conditions

m�x → − �� →
sy

s
, m�x → + �� → 1. �10�

The first boundary condition corresponds to the flowing state
left behind the front, while the second one corresponds to the
jammed state ahead of it. A solution can be readily obtained,
yielding

m�x,t� =

1 − � sy
2

s2 −
sy

s
�exp�− 2C�s��s/sy − 1��x − ut�

�0u
�

1 − � sy

s
− 1�exp�− 2C�s��s/sy − 1��x − ut�

�0u
� .

�11�

This seems to be a propagating front solution in which a
plastically deforming region, Dpl�0, invades a jammed re-
gion, Dpl=0.

However, Eq. �11� is not a unique solution of the problem
since it is valid for any velocity u. More importantly, a ve-
locity u cannot be selected by Eq. �8� in principle since in the
absence of an intrinsic length scale a velocity cannot be di-
mensionally constructed. Therefore, if we aim at describing
the spatiotemporal patterns that accompany the onset of plas-
tic flow, we cannot avoid addressing the fundamental prob-
lem of a missing length scale in our theory. In fact, two
length scales are already implied within our theoretical
framework; a finite STZ density implies a typical distance
between STZs, which can be thought of as a microstructural
correlation length. This length scale might be relevant as
different STZs can interact via the stress and displacement
fluctuations generated when a STZ transforms between its
internal states. Evidence for the existence of such a length
scale was given, for example, in �15,16�; it can be identified
with the typical size of areas of quasicrystal-like short-range
order of �15� or with the typical size of regions free of liq-
uidlike defects of �16�.

The range in which these interactions can affect STZ tran-
sitions also implies a length scale, possibly larger than the
previous one, that is determined by the combined effect of
the magnitude of the stress fluctuation, its range, and the
distribution of STZ transition thresholds. This length scale
characterizes the scale in which the probability of finding a
sufficiently large stress perturbation �that can overcome the
local transition threshold� is not exponentially small. There-
fore, we should consider nonlocal stress fluctuations that can
induce STZ transitions at different locations where STZs al-
ready exist and are close to their transition threshold. This
effect was stressed by several authors �17–19� and was as-
sumed to be the origin of the cascades of rearrangements
observed in athermal quasistatic simulations �20�. With this
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physical intuition in mind, we should extend the homoge-
neous and local mean-field theory to include some inhomo-
geneous and nonlocal effects.

In summary, our theory should incorporate nonlocal terms
that account for the following physical effects: �i� The stress
and displacement fluctuations that are generated by STZ
transitions; �ii� the joint spatial probability distribution func-
tion of STZ that includes a correlation length; and �iii� the

STZ transition threshold distribution. Therefore, we add to
the left-hand side of Eqs. �1� and �2� terms that are weighted
integrals over existing terms that include the transition rates
R��s�; these terms represent the idea that STZ transitions
from � states to � states �or vice versa� at a given location
result in a properly weighted change in the rate of transitions
at different locations. Rearranging the modified equations,
we arrive at the following equation for m�x , t�:

�0ṁ�x,t� = 2C�s��1 − m�x,t���1 −
sm�x,t�

sy
� + 2C�s��1 −

sm�x,t�
sy

��
−�

�

K�x − x���1 − m�x�,t��dx�. �12�

The phenomenological kernel K�x� in Eq. �12�, whose di-
mension is �length�−1, represents the physics of STZ correla-
tions and interactions discussed above. The fact that it is a
one-dimensional function of x alone already incorporates
several approximations. First, there is some evidence that
STZ transitions generate quadrupolar elastic fields �17�. Here
this anisotropic structure is neglected due to the assumption
that the y dimension is much smaller than the x dimension.
Second, the kernel K might include some time dependence
that accounts, for example, for the wave nature of the stress
and displacement fluctuations. We assume that this time de-
pendence can be integrated out without affecting the basic
physics we are trying to describe. In choosing a specific
functional form for the kernel K�x�, we do not want to make
any definite claim as to whether the incorporated length scale
is a short-distance correlation length or a longer-distance cut-
off scale discussed above, but to stress that our theoretical
considerations entail the existence of a length scale. Both
physical possibilities share the feature that the immobile
STZs interact via nonlocal stress fluctuations, which can be
schematically described by

K�x� =
�

�
exp�−

x2

2�2� , �13�

where � is the characteristic length scale and � is the ampli-
tude. Note that we do not consider here very long-range ker-
nels, i.e., those with power-law tails, as we believe that the
STZ transition threshold distribution limits the range in
which stress fluctuations can induce STZ transitions, as ex-
plained above.

Equation �12�, with the kernel of Eq. �13�, poses a non-
trivial front selection problem. As in many other front selec-
tion problems �21�, there might exist a family of propagating
front solutions from which a unique solution is selected dy-
namically. A complete analysis of Eq. �12� is well beyond the
scope of the present work. However, we aim here at demon-
strating that the proposed additional terms indeed lead to
front selection. With that aim, we first consider the possibil-
ity that the nonlocal contribution is a small correction to the
mean-field equation and treat Eq. �12� perturbatively, with �

being the small parameter in the expansion. We thus write
m=m�0�+�m�1�+O��2�, where m�0� is given in Eq. �11�. The
first-order equation in � selects the velocity, from which we
estimate

u �
2�C�s�

�0
� s

sy
− 1� . �14�

It is important to note that the nonlocal term is a singular
perturbation in the sense that there is no solution at all in the
limit �→0.

As we cannot offer a similar analysis for the general case
where � is not necessarily small, we studied Eq. �12� nu-
merically by choosing ssy and introducing the homoge-
neous jammed state, m=1, with various localized perturba-
tions. In the numerical calculations we choose, for simplicity,
C�s�=H�s−sy��s−sy� for s0. Here H�·� is the Heaviside
unit step function. We have found that all perturbations con-
verge, for sufficiently large times, to a unique front profile
with a unique velocity u. This result shows that indeed the
new nonlocal term in Eq. �12� provides a front velocity and
profile selection mechanism for the problem at hand. In Fig.
1 we show the numerical front profile for a small amplitude
� and the analytic prediction of Eq. �11� �shifted by a few
time units for clarity�. In the inset we compare the numerical
results for the velocity u as a function of s to the prediction
of Eq. �14�. We observe that in this regime, i.e., for small �,
the profile is, to a very good approximation, given by Eq.
�11� with the selected velocity satisfying Eq. �14�. Upon in-
creasing the amplitude �, the nonlocal term becomes more
dominant and the solution of Eq. �11� is no longer accurate.
We thus conclude that, in the presence of the nonlocal inter-
action term, with the associated length scale �, the proposed
theory predicts the existence of propagating front solutions
that remain to be observed in computer simulations and
experiments.

IV. CONCLUDING REMARKS

The main question asked in this paper is: “What are the
spatiotemporal characteristics of the transition between a
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jammed state found at applied stresses below the yield stress
sy and a homogeneously flowing state found at applied
stresses above the yield stress sy?” In our opinion, this is a
fundamental question in the field of plasticity of amorphous

systems. We addressed this problem in the framework of the
recently developed athermal shear transformation zone
theory, which in our opinion offers a promising route for
developing a predictive theory of amorphous plasticity. This
theory describes the phenomenon of plastic yielding at a fi-
nite threshold in terms of an exchange of dynamic stability in
the equation of motion for an orientational order parameter
m. Our main result is that this theory predicts the existence
of propagating front solutions that accompany the yielding
transition provided that nonlocal effects are introduced. The
nonlocal terms that account for nonlocal STZ interactions
incorporate a length scale that is missing in the original
theory. Our predictions for the existence of plastic fronts at
the yielding transition should be tested in computer simula-
tions and experiments. This may provide further support for
the analytic structure of the developing STZ theory, substan-
tiate the existence of the bistable orientational order param-
eter m, and shed some light on the missing intrinsic length
scale. As the existence of a yield stress is a fundamental
property of materials, elucidating the spatiotemporal nature
of the yielding transition is of major importance.
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FIG. 1. �Color online� Propagating m front solution of Eq. �12�
with �=0.01 and s=1.1 �solid line� compared to the analytic pre-
diction given by Eq. �11� �dashed line�, shifted by a few time units
for clarity. �Inset� The velocity u �in units of 2� /�0� as a function of
s, for both the numerics �open circles� and the prediction of Eq. �14�
�solid line�.
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